
COL 9(4), 042701(2011) CHINESE OPTICS LETTERS April 10, 2011

Enhancing entanglement generation of two atoms in a
cavity with white noise using classical driving fields
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We investigate the entanglement dynamics of a quantum system consisting of two two-level atoms in a
cavity with classical driving fields in the presence of white noise. The cavity is initially prepared in the
vacuum state. Generally, the entanglement of two atoms decreases with the intensity of the thermal
fields and the coupling strength of the two-level atoms to the thermal fields. However, we find that the
entanglement of the quantum system can be enhanced by adjusting the frequency and the strength of the
classical driving fields in the presence of white noise.
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In the past decades, quantum entanglement has been
considered an important resource for the engineering and
processing of quantum information[1]. It can exhibit non-
local correlations between quantum systems that cannot
be accounted for classically. The cavity quantum electro-
dynamics (QED) can be used to create entanglement be-
tween atoms in cavities and establish quantum communi-
cations between different optical cavities[2]. Thus, many
efforts have been devoted to the study of the manipula-
tion of quantum entanglement with atoms and photons
in cavities[3−21].

In practice, a quantum system is inevitably influenced
by its surrounding environment[22]. The interaction be-
tween the quantum system and its environment leads
to the environment-induced decoherence. As a result,
a pure and entangled quantum system will generally be-
come mixed, and the amount of its entanglement will
subsequently degrade. This is perhaps the most serious
problem for all entanglement manipulation in quantum
information processing and quantum computation. Up
to now, several protocols have been suggested to mini-
mize the effects of decoherence, such as quantum error
correction[23], decoherence-free subspaces[24,25], quantum
feedback control[26], and dynamical decoupling[27].

In this letter, we propose a scheme to enhance the
amount of entanglement of a quantum system consist-
ing of two two-level atoms interacting with vacuum fields
in the presence of white noise by applying and control-
ling classical driving fields. We find an explicit ex-
pression of the density matrix of the system and study
the entanglement dynamics of the system by employing
concurrence[28]. Our calculation shows that the amount
of entanglement of the system can be enhanced by con-
trolling the classical driving fields even in the presence
of white noise.

We first consider a system consisting of two two-level
atoms interacting with two quantized fields with white
noise. Each atom is additionally driven by a classical
field. The Hamiltonian for the system can be described
by[13,14]

H = ωa†a +
ω0

2
(σz

1 + σz
2)

+ g[a(σ+
1 + σ+

2 ) + a†(σ−
1 + σ−

2 )]

+ λ[e−iωCt(σ+
1 + σ+

2 ) + eiωCt(σ−
1 + σ−

2 )], (1)

where ω, ω0, and ωc are the frequencies of the cavity,
atoms, and classical field, respectively. The operators
σz

i and σ±
i are defined by σz

i = |ei〉〈ei| − |gi〉〈gi| and
σ+

i = |ei〉〈gi|, where |ei〉 and |gi〉 are the excited and
ground states of atom i and σ−

i = (σ+
i )†. Here, a and

a† are annihilation and creation operators of the cavity;
g and λ are the coupling constants of the interactions of
each atom with the cavity and with the classical driv-
ing fields, respectively. Note that we have set ~ = 1
throughout this paper. The schematic diagram of the
present model is presented in Fig. 1.

In the rotating reference frame, the Hamiltonian
of the system can be transformed to the Hamil-
tonian H1 under a unitary transformation U1 =
exp [−iωct(σz

1 + σz
2)/2][11]:

H1 = U†
1HU1 − iU†

1

∂U1

∂t
= H

(1)
1 + H

(2)
1 , (2)

with

H
(1)
1 = ωa†a + g[eiωcta(σ+

1 + σ+
2 )

+ e−iωcta†(σ−
1 + σ−

2 )],

H
(2)
1 =

∆1

2
(σz

1 + σz
2) + λ[(σ+

1 + σ+
2 )

+ (σ−
1 + σ−

2 )], (3)

and ∆1 = ω0 −ωc. Clearly, the Hamiltonian H
(2)
1 can be

diagonalized as
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where Ω1 =
√

∆2
1 + 4λ2 and σ̃z
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|0i〉〈0i| − |1i〉〈1i|. Here, |0i〉 and |1i〉 are dressed states:
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Fig. 1. Schematic diagram of the present system. The two
two-level atoms are put into a cavity and separated by a large
distance so that there is no direct interaction between them.
The atoms are driven by two independent thermal fields and
classical driving fields.

with θ = arctan ( 2λ
∆1

). We find the effective Hamiltonian
H1 in the dressed states by ignoring the terms which do
not conserve energies (rotating wave approximation):

H1 = ωa†a +
Ω1

2
(σ̃1

z + σ̃2
z)

+ g cos2
θ

2
[eiωcta(σ̃1

+ + σ̃2
+)

+ e−iωcta†(σ̃1
− + σ̃2

−)], (6)

with σ̃i
+ = |0i〉〈1i| and σ̃i

− = |1i〉〈0i|. The Hamilto-
nian in Eq. (6) can be diagonalized by a final unitary
transformation U2 with U2 = exp [ iωct

2 (σ̃1
z + σ̃2

z)]. We
can rewrite the Hamiltonian of the system in the rotating
reference frame:
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2HU2 − iU†
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where ω′ = Ω1 +ωc =
√

∆2
1 + 4λ2 +ωc and g′ = g cos2 θ

2 .
Note that the unitary transformations U1 and U2 are
both local unitary transformations. The entanglement of
a quantum system does not change under local unitary
transformations. Thus, the entanglement of the system
considered here will not change by applying local unitary
transformations U1 and U2. Hereafter, unless specified
otherwise, we work in the rotating reference frame.

In the dispersive limit |∆2| = |ω′ − ω| À
√

n + 1g, the
interaction Hamiltonian g′[a(σ̃1

++σ̃2
+)+a†(σ̃1

−+σ̃2
−)]

can be regarded as a small perturbation. We assume the

cavity to be initially prepared in the vacuum states. Us-
ing the method of Refs. [9−11,13−15], we can recast the
effective Hamiltonian given in Eq. (7) in the dispersive
limit as

He = Ω[(|11〉〈11| + |12〉〈12|)
+ (σ̃1

+
σ̃2

− + σ̃1
−

σ̃2
+)], (8)

with ∆2 = ω′ − ω and Ω = (g cos2 θ
2 )2

∆2
. Note that in the

case of the dispersive limit and the initial state of the
cavity being the vacuum state, the cavity mode will stay
in the vacuum state during the evolution. Thus, we can
disregard the cavity mode. The master equation for the
density matrix ρ of the two atoms is

dρ

dt
= −i[He, ρ] + Laρ,

Laρ = (m + 1)γ
2∑

i=1

(2σ̃1
−

ρσ̃1
+ − |1i〉〈1i|ρ − ρ|1i〉〈1i|)

+ mγ

2∑
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(2σ̃1
+
ρσ̃1

− − |0i〉〈0i|ρ − ρ|0i〉〈0i|), (9)

where γ denotes the coupling strength of the two-level
atom to the external fields and mγ is the transition rate
due to the thermal field. Here, we assume that the two
atoms are driven by two independent thermal fields with
the same intensity. In addition, the spectral width of the
thermal fields is large compared with that of the atomic
transition so that the influence of the thermal fields can
be considered as white noise. Note that the parameter
m can be interpreted as an effective photon number, and
the spontaneous decay of the atom outside the cavity is
described by the parameter (m + 1)γ.

We assume that the two atoms are initially prepared in
the state |11〉⊗|02〉. Thus, the explicit analytical solution
of the above master equation is

ρ(t) = a11(t)|11〉〈11| ⊗ |12〉〈12|
+ a22(t)|11〉〈11| ⊗ |02〉〈02|
+ a33(t)|01〉〈01| ⊗ |12〉〈12|
+ a44(t)|01〉〈01| ⊗ |02〉〈02|
+ [a23(t)|11〉〈01| ⊗ |02〉〈12| + h.c], (10)

with h.c denoting the Hermitian conjugate and
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]
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1
2
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(2m + 1)2
+ cos(2Ωt)
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(2m + 1)2
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]
+

1
2

[
1

(2m + 1)2
− cos(2Ωt)

]
e−2(2m+1)γt,

a44(t) =
m + 1

(2m + 1)2
[m + 1 − e−2(2m+1)γt − me−4(2m+1)γt],

a23(t) =
i
2
e−2(2m+1)γt sin (2Ωt). (11)
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Fig. 2. Concurrence C as a function of time t and coupling
constants γ of the atoms and the fields with g = 0.01, ω =
2, ω0 = 1, ωc = λ = 0, m = 0.5.

Fig. 3. Concurrence C a function of time t and coupling
constants γ of the atoms and the fields with g = 0.01, ω =
2, ω0 = 1, ωc = λ = 2, m = 0.5.

Fig. 4. Concurrence C as a function of time t and intensity of
the thermal fields m with g = 0.01, ω = 2, ω0 = 1, ωc = λ =
0, γ = 0.1.

Now, we calculate the entanglement of two atoms by
using the explicit analytical solution (see Eq. (10)) of
the master equation given above. In order to study the
entanglement of the above system described by density
matrix ρ, we adopt the measure concurrence which is
defined by[28]

C = max {0, λ1 − λ2 − λ3 − λ4}, (12)

where λi (i=1,2,3,4) are the square roots of the eigen-
values in decreasing order of the magnitude of the
“spin-flipped” density matrix operator R = ρ(σy ⊗
σy)ρ∗(σy⊗σy), with the asterisk indicating complex con-
jugation. Here, σy is the Pauli Y matrix defined by

σy =
(

0 −i
i 0

)
.

Clearly, the density matrix ρ of Eq. (10) belongs to the
class of the “X” states. Explicitly, if the density matrix
of a quantum state is of the form a11 0 0 a14

0 a22 a23 0
0 a∗

23 a23 0
a∗
14 0 0 a44

 , (13)

then it belongs to the class of the X states. The concur-
rence of the quantum states of the X states is

C = 2max {0, |a23| −
√

a11a44, |a14| −
√

a22a33}. (14)

Combing the above equation and the density matrix of
Eq. (10), we obtain the concurrence of two atoms as
follows:

C(t) = 2max {0, |a23(t)| −
√

a11(t)a44(t)}, (15)

where a23(t), a11(t), and a44(t) are defined by Eq. (11).
Here, we have used the fact that a14(t) = 0.

In order to see the influence of the coupling constant
γ and the classical driving fields on the entanglement
dynamics of the atoms, we plot the concurrence C(t) as
a function of time t and parameter γ in Figs. 2 and 3.
From the above figures, one can see that in the case of
γ = 0, the concurrence is a periodic function of time
t. The period of the concurrence can be adjusted by
controlling the classical driving fields as seen in the two
figures. Comparing Figs. 2 and 3, we find that the clas-
sical driving fields can improve the entanglement of the
two atoms significantly. For example, in Fig. 2, the con-
currence of the two atoms is zero in the case of γ > 0.5,
that is, the two atoms are disentangled. However, their
concurrence is larger than zero in Fig. 3 in the case of
0.5 < γ < 0.9, indicating that the two atoms can be
entangled by applying the classical driving fields.

Now, we present the influence of the intensity of the
thermal fields m and the classical driving fields. We plot
the concurrence of the atoms as a function of time t and

Fig. 5. Concurrence C as a function of time t and intensity of
the thermal fields m with g = 0.01, ω = 2, ω0 = 1, ωc = λ =
2, γ = 0.1.
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the intensity of the thermal fields in Figs. 4 and 5. Gen-
erally, the entanglement of two atoms decreases with the
intensity of the thermal fields[10] as shown in Figs. 4
and 5. Comparing these two figures, we observe that the
classical driving fields can be used to enhance the entan-
glement of the two atoms.

In conclusion, we have proposed a scheme to improve
the amount of entanglement of a quantum system consist-
ing of two two-level atoms interacting with vacuum fields
in the presence of white noise by applying and control-
ling the classical driving fields. We derive the effective
Hamiltonian of the present system and find an explicit
analytical expression of the density matrix of the sys-
tem. We also study the entanglement dynamics of the
system by employing concurrence. The influences of the
coupling constants γ, the intensity of the thermal fields
m, and the classical driving fields are discussed. In gen-
eral, the entanglement of the two atoms decreases with
the increase of the parameter γ and m. Our calculation
shows that the amount of entanglement of the system can
be enhanced by controlling the classical driving fields. In
other words, the scheme suggested in this letter could be
used to generate entangled states under the influence of
white noise more efficiently, which is important for quan-
tum information processing.
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